Comparison between two versions of the Patient State Index® during propofol and sevoflurane anesthesia, with or without remifentanil

Kuizenga M.H., Colin P.J., Vereecke H.E.M., Struys M.M.R.F. University Medical Center Groningen, University of Groningen, Dept of Anaesthesiology, Groningen, Netherlands

Background and Goal of Study: Patient State Index® (PSI-1) (Masimo, Irvine, CA, USA) is a processed electroencephalogram (EEG) parameter that quantifies the level of EEG inhibition by anesthetic drugs. Recently, a new PSI algorithm (PSI-2) was launched with improved performance in low power EEG and reduced susceptibility to electromyography. The objective of this study was to compare PSI-1 and PSI-2 in their correlation with propofol and sevoflurane drug concentrations and with the Modified Observers Assessment of Alertness and Sedation (MOAAS) scale. We also assessed the influence of respectively 2 or 4 ng/ml effect-site concentration of remifentanil (Ce_{REMI}) on the performance.

Materials and Methods: After institutional ethics committee approval (University Medical Center Groningen, Groningen, Netherlands) we included 36 healthy volunteers, stratified per age. Each volunteer was randomly allocated to a sequence of four sessions of anesthesia with a one week interval. During one session, we administered propofol in graded effect-site concentration steps. Sevoflurane was administered in session 2 driven by end-tidal vol%. In sessions 3 and 4 steps were repeated with addition of 2 or 4 ng/ml Ce_{REMI}. At each step, a 12 minute equilibration delay was maintained before testing the MOAAS and taking a blood sample for propofol and remifentanil concentrations measurement. We collected raw frontal EEG by means of a Root® monitor and a SedLine® sensor (Masimo, Irvine, CA, USA). Post-hoc, we extracted time synchronized PSI-1 and PSI-2, and plotted both versus respectively measured propofol or sevoflurane concentration. We used non-linear mixed effect modeling to fit a sigmoidal E_{max} dose response relationship. We also plotted PSI versus MOAAS.

Results and Discussion: After modeling PSI versus concentration, PSI-2 shows reduced population variability and improved baseline stability compared to PSI-1. The E_{max} model parameters are comparable except for E_{max} which has a wider descriptive range for PSI-2. Looking at PSI versus MOAAS, PSI-2 has a lower interindividual variability than PSI-1. Both PSI’s distinguish MOAAS 5,4 and 3 better during propofol anesthesia compared to sevoflurane. This difference disappears when adding remifentanil.

Conclusion(s): PSI-2 has enhanced signal stability and a better description of the dose-response relationship. PSI-2 has therefore improved capacity as a pharmacodynamic monitor of anesthesia compared to PSI-1.